Пептидный связь — химическая связь, возникающая между двумя молекулами в результате реакции конденсации между карбоксильной группой (-СООН) одной и аминогруппой (-NH 2) другой, при этом выделяется одна молекула воды (H 2 O). Молекула, содержащая пептидный связь называется амидом. Чотирьохатомна функциональная группа -C (= O) NH- называется амидной группой или, когда речь идет о белках, пептидной.
Образование пептидной связи
Пептидный связь образуется в результате реакции конденсации между карбоксильной и аминогруппой. При этом аминогруппа играет роль нуклеофила, замещая гидроксил карбоксильной группы:
Поскольку -OH является плохой отходной группой, описана реакция конденсации протекает очень тяжело. Обратная реакция — разрушение пептидной связи — называется реакцией гидролиза. При стандартных условиях равновесие замещена именно в сторону гидролиза и образования свободных аминокислот (или других мономерных единиц). Итак пептидный связь метастабильное, несмотря на то, что при его гидролизе выделяется около 10 кДж / моль энергии, этот процесс без наличия катализатора гидролиза протекает чрезвычайно медленно: время жизни пептида в водном растворе составляет около 1000 лет. В живых организмах, реакции гидролиза ускоряются ферментами.
- Пептидная связь: образование, строение …
- Аминокислоты. Пептиды. Белки …
- Пептидная связь
Реакция конденсации, в результате которой происходит формирование пептидной связи, требует вклада свободной энергии. Как в химическом синтезе, так и в биосинтезе белков, это обеспечивается активацией карбоксильных групп, в результате чего отхождения гироксильнои группы облегчается.
Строение, классификация и физико-химические свойства протеиногенных аминокислот
Протеиногенными называются а, L-аминокислоты, включающиеся в состав белковых молекул в процессе биосинтеза. Протеиногенные аминокислоты называют исторически сложившимися тривиальными названиями (табл. 1).
Таблица 1
Протеиногенные а, L-аминокислоты млекопитающих
Название |
Структурная формула* |
Обозначение |
|
русское |
международное |
||
Глицин |
Гли |
Gly, G |
|
Аланин |
Ала |
Ala, А |
|
Валин** |
Вал |
Val, V |
|
Лейцин** |
Лей |
Leu, L |
|
Изолейцин** |
Иле |
lie, I |
|
Серин |
Сер |
Ser, S |
|
Треонин** |
Тре |
Thr, T |
|
Цистеин |
Цис |
Cys, C |
|
Метионин** |
Мет |
Met, M |
|
Лизин** |
Лиз |
Lys, К |
|
Аргинин*** |
Apr |
Arg, R |
|
Аспарагиновая кислота |
Асп |
Asp, D |
Название |
Структурная формула* |
Обозначение |
|
русское |
международное |
||
Аспарагин |
Асн |
Asn, N |
|
Глутаминовая кислота |
Глу |
Glu, Е |
|
Глутамин |
Глн |
Gin, Q |
|
Фенил-аланин** |
Фен |
Phe, F |
|
Тирозин |
Тир |
Туг, Y |
|
Триптофан** |
Три |
Trp, W |
|
Гистидин*** |
Гис |
His, H |
|
Пролин |
Про |
Pro, P |
- * Боковые радикалы R выделены жирным шрифтом. ** Незаменимые аминокислоты.
- *** Условно незаменимые аминокислоты.
Таким образом, известно 20 протеиногенных аминокислот, 19 из которых имеют общую формулу, включающую карбоксильную группу, аминогруппу, асимметрический атом углерода, водород и боковой радикал R. Двадцатая аминокислота (пролин), по существу, является иминокислотой и представляет собой пятичленный гетероцикл. Определяет аминокислоту строение бокового радикала R, поскольку остальная часть молекулы для всех протеиногенных аминокислот совершенно одинакова. На этом основана классификация аминокислот по строению бокового радикала R (табл. 2).
Классификация аминокислот по строению боковото радикала R
Полярность аминокислот |
Химический состав |
Перечень аминокислот |
Неполярные гидрофобные |
Моноамино- монокарбоновые |
Глицин, лейцин, изолейцин, валин, аланин, фенилаланин |
Полярные незаряженные |
Моноамино- монокарбоновые |
Серин, треонин, тирозин, метионин, цистеин, аспарагин, глутамин |
Положительно заряженные (основные) |
Диамино- монокарбоновые |
Лизин, аргинин, триптофан |
Отрицательно заряженные (кислые) |
Моноамино- дикарбоновые |
Аспарагиновая кислота, глутаминовая кислота |
Аминокислоты являются амфотерными соединениями (амфолитами): в щелочных средах они образуют соли карбоновых кислот, в кислых — аммонийные соли:
На диссоциацию аминокислот оказывает влияние pH среды. В очень кислых растворах аминогруппа протонирована полностью, а карбоксильная группа практически не ионизирована. В сильнощелочных растворах — наоборот: при значениях pH от 4 до 9 каждая из диссоциирующих групп находится в равновесии со своей неионизирован- ной формой, а обе группы вместе находятся в равновесии с биполярным ионом (цвиттер-ионом). Если сумма зарядов на аминокислоте равна нулю, такое значение pH носит название изоэлектриче- ской точки и обозначается pi (рис. 4).
Рис. 4. Кислотно-основные свойства аминокислоты при различных
значениях pH
Еще одним проявлением амфотерности является способность аминокислот образовывать в щелочной среде с сульфатом меди ярко окрашенные растворимые комплексные соединения с ионом меди Си2+:
Эта реакция лежит в основе биуретового метода качественного и количественного определения белков.
При взаимодействии а-аминогруппы одной аминокислоты с а-карбоксильной группой другой аминокислоты образуются пептидные связи. Так формируется остов молекулы белка. Главная структурная единица белков и пептидов — пептидная связь (рис. 5).
Рис. 5. Схема образования пептидной связи
Пептидная связь имеет плоскостную структуру: атомы С, О и N находятся в ?/?2-гибридизации; у атома N имеется /?-орбиталь с неподеленной парой электронов; образуется /?-тг-сопряженная система, приводящая к укорочению связи C-N (0,132 нм). Это вызвано различной электроотрицательностью атомов С, N и О.
Связанные пептидной связью аминокислоты образуют поли- пептидную цепь. Вокруг пептидной связи вращение невозможно, все четыре атома лежат в одной плоскости, т.е. компланарны. Вращение же других связей вокруг полипептидного остова достаточно свободно. Пептидная связь имеет преимущественно ш/?я«с-конфигурацию относительно плоскости пептидной связи. Строение пептидной связи проявляется в формировании вторичной и третичной структуры белка.
Пептидная связь устойчива при температурах ниже 40 °С в нейтральной среде, при более высоких температурах в кислой или щелочной среде пептидная связь может гидролизоваться.
Свойства аминокислот
Аминогруппа —NH2 определяет основные свойства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.
Группа —СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Следо вательно, аминокислоты — это амфотерные органические соединения.
Со щелочами они реагируют как кислоты:
С сильными кислотами как основания-амины:
Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:
Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:
Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.
- Презентация на тему: «Часть 8 …
- Аминокислоты, белки — презентация онлайн
- 1.5. Белки
Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависимости от радикала R— они могут быть сладкими, горькими или безвкусными.
Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым, т. к. они не синтезируются в организме человека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей. Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.
Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки —NH—CO—, например:
Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.
К ним, кроме названного выше синтетического волокна капрона, относят, например, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических волокон пригодны аминокислоты с расположением амино- и карбоксильной групп на концах молекул.
Полиамиды α-аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипептиды. В таких соединениях группы -NH-CO- называют пептидными.
Заключение
Пептидная связь является основой построения белковых молекул, из которых, в конечном итоге, строятся все живые организмы. Особенности её строения и пространственной конфигурации оказали огромное влияние на саму возможность существования жизни на нашей планете.
Последовательность аминокислот в белке определяется другой важнейшей молекулой – ДНК.
ПредыдущаяХимияКовалентная полярная и неполярная связь — определение, характеристика и примеры
СледующаяХимияКоэффициенты в химических уравнениях — как правильно расставлять и уравнивать